xdem.coreg.BiasCorr

xdem.coreg.BiasCorr#

class xdem.coreg.BiasCorr(fit_or_bin='fit', fit_func='norder_polynomial', fit_optimizer=<function curve_fit>, bin_sizes=10, bin_statistic=<function nanmedian>, bin_apply_method='linear', bias_var_names=None, subsample=1.0)[source]#

Bias-correction (non-rigid alignment) simultaneously with any number and type of variables.

Variables for bias-correction can include the elevation coordinates (deramping, directional biases), terrain attributes (terrain corrections), or any other user-input variable (quality metrics, land cover).

The binning and/or fitting correction parameters are stored in the self.meta[“outputs”][“fitorbin”].

__init__(fit_or_bin='fit', fit_func='norder_polynomial', fit_optimizer=<function curve_fit>, bin_sizes=10, bin_statistic=<function nanmedian>, bin_apply_method='linear', bias_var_names=None, subsample=1.0)[source]#

Instantiate an N-dimensional bias correction using binning, fitting or both sequentially.

All fit arguments apply to “fit” and “bin_and_fit”, and bin arguments to “bin” and “bin_and_fit”.

Parameters:
  • fit_or_bin (Union[Literal['bin_and_fit'], Literal['fit'], Literal['bin']]) – Whether to fit or bin, or both. Use “fit” to correct by optimizing a function or “bin” to correct with a statistic of central tendency in defined bins, or “bin_and_fit” to perform a fit on the binned statistics.

  • fit_func (Union[Callable[..., ndarray[Any, dtype[floating[Any]]]], Literal['norder_polynomial'], Literal['nfreq_sumsin']]) – Function to fit to the bias with variables later passed in .fit().

  • fit_optimizer (Callable[..., tuple[ndarray[Any, dtype[floating[Any]]], Any]]) – Optimizer to minimize the function.

  • bin_sizes (int | dict[str, Union[int, Iterable[float]]]) – Size (if integer) or edges (if iterable) for binning variables later passed in .fit().

  • bin_statistic (Callable[[ndarray[Any, dtype[floating[Any]]]], floating[Any]]) – Statistic of central tendency (e.g., mean) to apply during the binning.

  • bin_apply_method (Union[Literal['linear'], Literal['per_bin']]) – Method to correct with the binned statistics, either “linear” to interpolate linearly between bins, or “per_bin” to apply the statistic for each bin.

Methods

__init__([fit_or_bin, fit_func, ...])

Instantiate an N-dimensional bias correction using binning, fitting or both sequentially.

apply(elev[, bias_vars, resample, ...])

Apply the estimated transform to a DEM.

copy()

Return an identical copy of the class.

error(reference_elev, to_be_aligned_elev[, ...])

Calculate the error of a coregistration approach.

fit(reference_elev, to_be_aligned_elev[, ...])

Estimate the coregistration transform on the given DEMs.

fit_and_apply(reference_elev, to_be_aligned_elev)

Estimate and apply the coregistration to a pair of elevation data.

info([as_str])

Summarize information about this coregistration.

residuals(reference_elev, to_be_aligned_elev)

Calculate the residual offsets (the difference) between two DEMs after applying the transformation.

Attributes

is_affine

Check if the transform be explained by a 3D affine transform.

is_translation

meta

Metadata dictionary of the coregistration.